Why SF6 RMUs Must Undergo Gas-Tightness Testing and the Methods Used

Gas-tightness tests on SF₆ ring-main units are mandatory because leakage erodes dielectric strength, risks explosion and releases the world’s most potent greenhouse gas. A 0.5 % annual limit safeguards grids, complies with F-Gas/Kyoto rules and preserves carbon credits worth ~1 900 $ per avoided kilogram. Factory helium mass-spectrometry (10⁻¹¹ Pa·m³/s) guarantees zero defects; field pressure-decay or IR laser imaging spots micro-leaks down to 0.5 g/year. On-line density sensors give 24/7 data, enabling predictive seal replacement and cutting lifetime emissions below 3 %.

Why Ring Main Units Must Undergo Gas-Tightness Testing and the Methods Used

The following is a full-life-cycle guide to gas-tightness management of SF₆-insulated ring-main units (RMUs). It covers six dimensions: regulations, theory, failure modes, test technologies, on-site implementation and data management. Use it as a pocket handbook.

  1. Regulations and standards – why 0.5 %/year is a hard limit
    1.1 Environmental law
  • Kyoto Protocol: SF₆ GWP = 23 500. EU F-Gas Reg. (EU) 517/2014 requires an 80 % cut in emissions by 2030.
  • China MEE “Guidelines for SF₆ emission accounting & reporting” (2022): any user storing ≥1 t SF₆ must report annual leakage to the provincial authority. 1 t ≈ 550 RMUs (1.8 kg each); most city utilities easily exceed the threshold.

1.2 Electrical safety

  • GB/T 11022-2020 5.103.2: maximum relative annual leakage rate ≤0.5 %.
  • GB/T 3906-2020 6.104: type test must include “sealing test”; routine test record must be kept 10 years.
  • DL/T 593-2021 allows contractual limit <0.1 % if buyer & supplier agree.

1.3 Carbon trading

  • China CCER methodology (2025) accepts SF₆ emission reduction. 1 kg SF₆ saved = 23.5 t CO₂-e. At 80 ¥/t the credit = 1 880 ¥ – “leakage is cash outflow”.
  1. Physics / chemistry of SF₆ leakage & failure modes
    2.1 Sealing principle
  • Primary: EPDM O-ring 18–22 % compression, 120 N/mm line pressure at 0.6 MPa (g) fills flange knife marks.
  • Secondary: 0.3 mm raised land in groove acts as stop-ridge, prevents O-ring extrusion.
  • Tertiary: stainless bellows or TIG weld = “zero-leak barrier”, 25-year maintenance-free in theory.

2.2 Failure contribution (11 utility bursts 2020-2024)

  • O-ring ageing 42 % (compression set >30 % after 8 y).
  • Casting pores 23 % (0.2 mm pore = 1×10⁻⁵ Pa·m³/s).
  • Switching vibration 15 % (30 g shock, bolt preload −8 %/y).
  • Thermal cycling stress 12 % (ΔT 60 K, Al vs. SS Δα = 11×10⁻⁶ K⁻¹, shear 80 MPa).
  • Others 8 %.

2.3 Leakage curve

  • 0–100 h “rapid drop” 2–5 %/y – seating & burr cutting.
  • 100 h–7 y “stable permeation” 0.1–0.3 %/y, Fick’s law J = D·ΔC/δ.
  • >7 y “accelerated” >0.5 %/y – exponential, seals must be replaced.
  1. Quantitative test techniques
    A. Helium mass-spectrometry (lab)
  • Limit: 1×10⁻¹¹ Pa·m³/s ≈ 0.002 g SF₆/y.
  • Procedure: vacuum chamber <5 Pa → fill 0.5 MPa He → magnetic-sector analyser.
  • Note: SF₆/He conversion factor 1.8; reclaim He or waste 50 L ≈ 120 US$.

B. Pressure-decay (factory / commissioning)

  • Fill dry air 0.45 MPa → 24 h rest → ΔP ≤200 Pa.
  • Formula: L = ΔP·V·M/(R·T·t·P₀)·365.
    Example: 0.14 m³ tank, ΔP = 180 Pa, T = 293 K → L = 0.18 %/y <0.5 % PASS.
  • Temperature correction: 1 °C = 340 Pa; test at 20 °C ±2 °C or apply α = 1/273 K.

C. Vacuum-decay (sub-assembly)

  • Pump to 133 Pa, valve-off 4 h, ΔP ≤25 Pa finds >1×10⁻⁵ Pa·m³/s gross leaks.

D. IR laser imaging (live patrol)

  • SF₆ absorbs 10.55 µm; QCL laser creates “black-smoke” image.
  • 3 ppm·m ≈ 0.5 g/y; 0–30 m distance, wind <3 m/s; cost ≈ 120 k€.

E. Ultrasound / acoustic camera

  • 40 kHz turbulence noise; 128 MEMS microphones, ±2 cm location.

F. On-line density sensor + IoT

  • Digital temperature-compensated gauge (−40–+85 °C, ±0.1 %FS) uploads P, T, ρ; algorithm outputs “equivalent annual leakage rate” – SMS alarm at 0.1 % level.
  1. On-site workflow (10 kV common-tank RMU)
    4.1 Acceptance
    a) Visual: flange gap, bursting disc, pressure gauge seat, service valve.
    b) Bag + quantitative: wrap PVC 30 min, GF306 meter <10 ppm PASS.
    c) Pressure-decay: use “night-reading” (22:00 vs 06:00) to cancel diurnal ΔT.

4.2 Patrol (yearly)

  • IR + acoustic, two persons, 15 min/RMU; >0.5 g/y = Class-III defect, re-check within 1 month.

4.3 Maintenance policy

  • Class I (>5 %/y): immediate outage, return to factory.
  • Class II (1–5 %/y): outage within 6 months, replace seals.
  • Class III (0.5–1 %/y): planned outage, top-up + on-line monitor.
  • Class IV (<0.5 %/y): normal cycle.
  1. Data management & carbon asset accounting
    5.1 Create “birth certificate”: serial No., chamber volume, initial fill, every test date/leakage, top-up history.
    5.2 Auto CO₂-e conversion:
    Annual leakage (kg) = Initial charge × annual rate
    CO₂-e (t) = leakage (kg) × 23.5
    Example: 1.8 kg × 0.3 % × 23.5 = 0.127 t CO₂-e/y.
    5.3 Upload to provincial MRV platform for CCER claim or green-power trading.
  1. Design → process → operation leakage-reduction chain
    6.1 Design
  • Seal groove to ISO 6149-2, Ra ≤0.8 µm.
  • Double O-ring + stop-ridge; outer UV-resistant, inner SF₆-low-permeation.
  • Bursting disc changed to laser-welded Ni foil, zero gasket.

6.2 Manufacturing

  • 100 % He leak after shell welding; enter assembly only if pass.
  • IP68 test: 1 m water, 48 h, no bubbles.
  • O-ring 200 % compression 70 h; reject if set >15 %.

6.3 Operation

  • IR at 1 week & 1 month after energising to catch “infant leakage”.
  • Replace disc & gauge every 5 years (edge stress-corrosion is main cause of >7 y bursts).
  • Pilot alternative gases: C₄F₇N/CO₂ or dry air, GWP down 98 %, no regulatory risk if leak.
  1. One-sentence takeaway for management
    “Keeping RMU annual SF₆ leakage below 0.5 % is not only a mandatory limit but also a tradable carbon asset; move helium leak testing to the factory, bring IR imaging to field crews, and plug on-line density gauges into IoT, and you can hold lifetime leakage under 3 % – saving ~400 kg CO₂-e per unit, worth about 3 200 ¥ in carbon revenue, enough to pay for all the testing hardware.”

Detailed Summary Table – SF₆ Gas-Tightness Management for Ring Main Units (Life-Cycle View)

No.DimensionSub-itemKey Index / RequirementApplicable Standard / RegulationStageRecommended MethodCost & BenefitRemarks
1Regulatory limitEnvironmentGWP = 23 500; EU F-Gas –80 % by 2030(EU) 517/2014; Kyoto ProtocolDesign / OperationCarbon accounting1 kg SF₆ = 23.5 t CO₂-e ≈ 1 900 USD creditChina MEE rule ≥1 t must report annually
2Electrical safetyMax. 0.5 % yr⁻¹ leakageGB/T 11022-2020 5.103.2Type / Routine / CommissioningHelium / pressure decayNo type-test certificate if failContract may set <0.1 %
3Carbon tradingSF₆ offset accepted in China CCER from 2025National ETS expansionOperationOn-line monitoring + MRV platform400 kg CO₂-e saved ≈ 3 200 CNY (80 CNY/t)MRV = measurable, reportable, verifiable
4Failure modeO-ring ageingCompression set >30 % after 8 yStateGrid statistics 42 %7–10 yIR + ultrasoundReplace seals earlierUse low-set EPDM
5Casting pores0.2 mm pore → 1×10⁻⁵ Pa·m³/sGB/T 3906-2020 6.104Pre-deliveryHelium 10⁻¹¹ Pa·m³/sSingle point fail100 % welded shell He tested
6Thermal cyclingΔT 60 K, Al-SS Δα = 11×10⁻⁶ K⁻¹, shear 80 MPaThermal stress analysisDesignStop-ridge + double O-ringReduces micro-slipOutdoor units mandatory thermal test
7Test tech.Helium spectrometer1×10⁻¹¹ Pa·m³/s ≈ 0.002 g SF₆ yr⁻¹ISO 15823-2009Type / RoutineVacuum chamber + magnetic sectorPlant 200k USD, 50 L He ≈ 120 USD/unitSF₆/He conversion 1.8
8Pressure decay0.45 MPa dry air, 24 h ΔP ≤200 PaGB/T 3906-2020 Annex CSite acceptanceDigital manometerZero consumable; temp. coeff. 340 Pa/°CNight-reading cancels diurnal drift
9IR laser imaging10.55 µm absorption, 3 ppm·m ≈ 0.5 g yr⁻¹IEC 62485-3Live inspectionQCL laser camera120k USD set, 0–30 m rangeWind <3 m/s; cross-check with ultrasound
10On-line density sensor±0.1 %FS, −40–+85 °CDL/T 593-2021ServiceIoT upload P,T,ρ300 USD/node, 10 y lifeAuto-computes equivalent annual rate
11MaintenanceDefect classesI >5 % yr⁻¹: immediate outage; II 1–5 %: 6 m seal change; III 0.5–1 %: plan top-up; IV <0.5 %: normalStateGrid codeOperationData-driven60 % fewer forced outagesLinked to ERP work orders
12Design opt.Sealing structureDouble O-ring + stop-ridge, groove Ra ≤0.8 µmISO 6149-2Design3D + FEALife 7→25 yLaser-weld Ni disc = zero gasket
13Alternative gasesC₄F₇N/CO₂ or dry air, GWP −98 %IEC 62271-4New unitsRe-calc insulationSame frame needs +0.1 MPaNot for −40 °C yet
14Economics25 y leakageTraditional ≈12 % → 5.1 t CO₂-e; Tight <3 % → 1.3 tCarbon 80 CNY/tWhole lifeStrict controlSave 3.2 t×80 = 256 CNY covers 200 CNY test costPlus green-power premium upside

Similar Posts